145 research outputs found

    Entropy of convolutions on the circle

    Full text link
    Given ergodic p-invariant measures {\mu_i} on the 1-torus T=R/Z, we give a sharp condition on their entropies, guaranteeing that the entropy of the convolution \muon converges to \log p. We also prove a variant of this result for joinings of full entropy on \T^\N. In conjunction with a method of Host, this yields the following. Denote \sig_q(x) = qx\pmod{1}. Then for every p-invariant ergodic \mu with positive entropy, \frac{1}{N}\sum_{n=0}^{N-1}\sig_{c_n}\mu converges weak^* to Lebesgue measure as N \goesto \infty, under a certain mild combinatorial condition on {c_k}. (For instance, the condition is satisfied if p=10 and c_k=2^k+6^k or c_k=2^{2^k}.) This extends a result of Johnson and Rudolph, who considered the sequence c_k = q^k when p and q are multiplicatively independent. We also obtain the following corollary concerning Hausdorff dimension of sum sets: For any sequence {S_i} of p-invariant closed subsets of T, if \sum \dim_H(S_i) / |\log\dim_H(S_i)| = \infty, then \dim_H(S_1 + \cdots + S_n) \goesto 1.Comment: 34 pages, published versio

    Discovery of microRNAs and other small RNAs in solid tumors

    Get PDF
    MicroRNAs (miRNAs) are ∼22-nt long, non-coding RNAs that regulate gene silencing. It is known that many human miRNAs are deregulated in numerous types of tumors. Here we report the sequencing of small RNAs (17–25 nt) from 23 breast, bladder, colon and lung tumor samples using high throughput sequencing. We identified 49 novel miRNA and miR-sized small RNAs. We further validated the expression of 10 novel small RNAs in 31 different types of blood, normal and tumor tissue samples using two independent platforms, namely microarray and RT–PCR. Some of the novel sequences show a large difference in expression between tumor and tumor-adjacent tissues, between different tumor stages, or between different tumor types. We also report the identification of novel small RNA classes in human: highly expressed small RNA derived from Y-RNA and endogenous siRNA. Finally, we identified dozens of new miRNA sequence variants that demonstrate the existence of miRNA-related SNP or post-transcriptional modifications. Our work extends the current knowledge of the tumor small RNA transcriptome and provides novel candidates for molecular biomarkers and drug targets

    Biallelic ADAM22 pathogenic variants cause progressive encephalopathy and infantile-onset refractory epilepsy

    Get PDF
    Pathogenic variants in A Disintegrin And Metalloproteinase (ADAM) 22, the postsynaptic cell membrane receptor for the glycoprotein leucine-rich repeat glioma-inactivated protein 1 (LGI1), have been recently associated with recessive developmental and epileptic encephalopathy. However, so far, only two affected individuals have been described and many features of this disorder are unknown. We refine the phenotype and report 19 additional individuals harboring compound heterozygous or homozygous inactivating ADAM22 variants, of whom 18 had clinical data available. Additionally, we provide follow-up data from two previously reported cases. All affected individuals exhibited infantile-onset, treatment-resistant epilepsy. Additional clinical features included moderate to profound global developmental delay/intellectual disability (20/20), hypotonia (12/20), delayed motor development (19/20). Brain MRI findings included cerebral atrophy (13/20), supported by post-mortem histological examination in patient-derived brain tissue, cerebellar vermis atrophy (5/20), and callosal hypoplasia (4/20). Functional studies in transfected cell lines confirmed the deleteriousness of all identified variants and indicated at least three distinct pathological mechanisms: defective cell membrane expression (1), impaired LGI1-binding (2), and/or impaired interaction with the postsynaptic density protein PSD-95 (3). We reveal novel clinical and molecular hallmarks of ADAM22 deficiency and provide knowledge that might inform clinical management and early diagnostics

    Biallelic ADAM22 pathogenic variants cause progressive encephalopathy and infantile-onset refractory epilepsy

    Get PDF
    Pathogenic variants in A Disintegrin And Metalloproteinase (ADAM) 22, the postsynaptic cell membrane receptor for the glycoprotein leucine-rich repeat glioma-inactivated protein 1 (LGI1), have been recently associated with recessive developmental and epileptic encephalopathy. However, so far, only two affected individuals have been described and many features of this disorder are unknown. We refine the phenotype and report 19 additional individuals harbouring compound heterozygous or homozygous inactivating ADAM22 variants, of whom 18 had clinical data available. Additionally, we provide follow-up data from two previously reported cases. All affected individuals exhibited infantile-onset, treatment-resistant epilepsy. Additional clinical features included moderate to profound global developmental delay/intellectual disability (20/20), hypotonia (12/20) and delayed motor development (19/20). Brain MRI findings included cerebral atrophy (13/20), supported by post-mortem histological examination in patient-derived brain tissue, cerebellar vermis atrophy (5/20), and callosal hypoplasia (4/20). Functional studies in transfected cell lines confirmed the deleteriousness of all identified variants and indicated at least three distinct pathological mechanisms: (i) defective cell membrane expression; (ii) impaired LGI1-binding; and/or (iii) impaired interaction with the postsynaptic density protein PSD-95. We reveal novel clinical and molecular hallmarks of ADAM22 deficiency and provide knowledge that might inform clinical management and early diagnostics. Van der Knoop et al. describe the clinical features of 21 individuals with biallelic pathogenic variants in ADAM22 and confirm the deleteriousness of the variants with functional studies. Clinical hallmarks of this rare disorder comprise progressive encephalopathy and infantile-onset refractory epilepsy.Peer reviewe

    Contacts in the last 90,000 years over the Strait of Gibraltar evidenced by genetic analysis of wild boar (Sus scrofa)

    Get PDF
    [EN] Contacts across the Strait of Gibraltar in the Pleistocene have been studied in different research papers, which have demonstrated that this apparent barrier has been permeable to human and fauna movements in both directions. Our study, based on the genetic analysis of wild boar (Sus scrofa), suggests that there has been contact between Africa and Europe through the Strait of Gibraltar in the Late Pleistocene (at least in the last 90,000 years), as shown by the partial analysis of mitochondrial DNA. Cytochrome b and the control region from North African wild boar indicate a close relationship with European wild boar, and even some specimens belong to a common haplotype in Europe. The analyses suggest the transformation of the wild boar phylogeography in North Africa by the emergence of a natural communication route in times when sea levels fell due to climatic changes, and possibly through human action, since contacts coincide with both the Last Glacial period and the increasing human dispersion via the strait.This study was supported by The Emirates Centre for Wildlife Propagation (Morocco). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Soria-Boix, C.; Donat-Torres, MP.; Urios, V. (2017). Contacts in the last 90,000 years over the Strait of Gibraltar evidenced by genetic analysis of wild boar (Sus scrofa). PLoS ONE. 12(7). doi:10.1371/journal.pone.0181929S12

    Speciation in little: the role of range and body size in the diversification of Malagasy mantellid frogs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rate and mode of lineage diversification might be shaped by clade-specific traits. In Madagascar, many groups of organisms are characterized by tiny distribution ranges and small body sizes, and this high degree of microendemism and miniaturization parallels a high species diversity in some of these groups. We here investigate the geographic patterns characterizing the radiation of the frog family Mantellidae that is virtually endemic to Madagascar. We integrate a newly reconstructed near-complete species-level timetree of the Mantellidae with georeferenced distribution records and maximum male body size data to infer the influence of these life-history traits on each other and on mantellid diversification.</p> <p>Results</p> <p>We reconstructed a molecular phylogeny based on nuclear and mitochondrial DNA for 257 species and candidate species of the mantellid frog radiation. Based on this phylogeny we identified 53 well-supported pairs of sister species that we used for phylogenetic comparative analyses, along with whole tree-based phylogenetic comparative methods. Sister species within the Mantellidae diverged at 0.2-14.4 million years ago and more recently diverged sister species had geographical range centroids more proximate to each other, independently of their current sympatric or allopatric occurrence. The largest number of sister species pairs had non-overlapping ranges, but several examples of young microendemic sister species occurring in full sympatry suggest the possibility of non-allopatric speciation. Range sizes of species included in the sister species comparisons increased with evolutionary age, as did range size differences between sister species, which rejects peripatric speciation. For the majority of mantellid sister species and the whole mantellid radiation, range and body sizes were associated with each other and small body sizes were linked to higher mitochondrial nucleotide substitution rates and higher clade diversity. In contrast, small range sizes were unexpectedly associated with a slow-down of mitochondrial substitution rates.</p> <p>Conclusions</p> <p>Based on these results we define a testable hypothesis under which small body sizes result in limited dispersal capabilities and low physiological tolerances, causing smaller and more strongly fragmented ranges. This can be thought to facilitate reproductive isolation and thus favor speciation. Contrary to the expectation of the faster speciation of such microendemic phenotype species, we only found small body sizes of mantellid frogs to be linked to higher diversification and substitution rates, but not small range sizes. A joint analysis of various species-rich regional anuran radiations might provide enough species with all combinations of range and body sizes for a more conclusive test of this hypothesis.</p

    Skinks of Oceania, New Guinea, and Eastern Wallacea: an underexplored biodiversity hotspot

    Get PDF
    © 2023 The Authors. Published by CSIRO Publishing. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1071/PC22034Context: Skinks comprise the dominant component of the terrestrial vertebrate fauna in Oceania, New Guinea, and Eastern Wallacea (ONGEW). However, knowledge of their diversity is incomplete, and their conservation needs are poorly understood. Aims: To explore the diversity and threat status of the skinks of ONGEW and identify knowledge gaps and conservation needs. Methods: We compiled a list of all skink species occurring in the region and their threat categories designated by the International Union for Conservation of Nature. We used available genetic sequences deposited in the National Center for Biotechnology Information’s GenBank to generate a phylogeny of the region’s skinks. We then assessed their diversity within geographical sub-divisions and compared to other reptile taxa in the region. Key results: Approximately 300 species of skinks occur in ONGEW, making it the second largest global hotspot of skink diversity following Australia. Many phylogenetic relationships remain unresolved, and many species and genera are in need of taxonomic revision. One in five species are threatened with extinction, a higher proportion than almost all reptile families in the region. Conclusions: ONGEW contain a large proportion of global skink diversity on <1% of the Earth’s landmass. Many are endemic and face risks such as habitat loss and invasive predators. Yet, little is known about them, and many species require taxonomic revision and threat level re-assessment. Implications: The skinks of ONGEW are a diverse yet underexplored group of terrestrial vertebrates, with many species likely facing extreme risks in the near future. Further research is needed to understand the threats they face and how to protect themDGC was supported by a grant from the Australian Research Council (FT200100108). Solomon Islands fieldwork by RMB and colleagues was supported by a grant from the US National Science Foundation (DEB-1557053). Research on New Guinea skinks by AS and colleagues, including fieldwork, was supported by Binational Science Foundation grants (2012143 to SM and AA and 002030900 to AS), a Naomi Foundation through the Tel Aviv University GRTF program grant (064181317 to AS), US National Science Foundation grants (DEB-0103794 and DEB-0743890 to FK and AA and DEB-1146033 and DEB-1926783 to CCA), and a National Geographic Explorer’s Grant (NGS-53506R-18) to CCA. RNF and JQR research in the Pacific Islands has been funded by many groups including Mohamed bin Zayed, Conservation International, Island Conservation, Wildlife Conservation Society, IUCN Oceania, SPREP, CEPF, San Diego Zoo Global, University of the South Pacific, and the U.S. Geological Survey.Published versio

    The origins and persistence of Homo floresiensis on Flores: biogeographical and ecological perspectives

    Get PDF
    The finding of archaeological evidence predating 1 Ma and a small hominin species (Homo floresiensis) on Flores, Indonesia, has stimulated much research on its origins and ancestry. Here we take a different approach and examine two key questions – 1) how did the ancestors of H. floresiensis reach Flores and 2) what are the prospects and difficulties of estimating the likelihood of hominin persistence for over 1 million years on a small island? With regard to the first question, on the basis of the biogeography we conclude that the mammalian, avian, and reptilian fauna on Flores arrived from a number of sources including Java, Sulawesi and Sahul. Many of the terrestrial taxa were able to float or swim (e.g. stegodons, giant tortoises and the Komodo dragon), while the rodents and hominins probably accidentally rafted from Sulawesi, following the prevailing currents. The precise route by which hominins arrived on Flores cannot at present be determined, although a route from South Asia through Indochina, Sulawesi and hence Flores is tentatively supported on the basis of zoogeography. With regards to the second question, we find the archaeological record equivocal. A basic energetics model shows that a greater number of small-bodied hominins could persist on Flores than larger-bodied hominins (whether H. floresiensis is a dwarfed species or a descendent of an early small-bodied ancestor is immaterial here), which may in part explain their apparent long-term success. Yet the frequent tsunamis and volcanic eruptions in the region would certainly have affected all the taxa on the island, and at least one turnover event is recorded, when Stegodon sondaari became extinct. The question of the likelihood of persistence may be unanswerable until we know much more about the biology of H. floresiensis
    corecore